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Syllogisms

No researchers are gods
Some gods are great reasoners

What (if anything) follows?

» Quantified statements in one of four moods (All, Some, Some ...
not, and None)

» Classical syllogisms consist of two premises and one conclusion

= The premises contain terms that can be arranged in one of four
so-called figures

= Structurally, there are 64 possible syllogisms

= First-Order Logics is not able to account for human performance

Encodings

» Automated modeling approaches benefit from rich data

» Categorical data is not suited for numerical methods

» Standard encodings such as onehot encoding make categories
accessible

= A syllogistic answer can be encoded using 9 bits:

All Some Some not None NVC
ac ca ac ca ac ca ac ca

0 0 1 0 0 0 0 0 0

» The usual experimental record of 64 answers produce a sparse
onehot vector of dimensionality 576

Research Question

= Does the representation of data have an impact on general model
performance?

= Which features of the data are important/necessary?

= How dense is the information encoded in the data?

= Can we find encodings for behavioural data enabling the use of
general models from computer science and artificial intelligence?

= |s machine learning generally suited to analyze behavioral data?

= Can we use representation learning techniques to infer meta-
information from the data (e.g., dependencies, redundancies,
noise, etc.)?

The Autoencoder

= Artificial neural network model finding minimized latent state
representation for given inputs

» The Encoder component represents a function to compress the
iInputs into a latent state

= The Decoder component recovers the original data from the
latent state

= Trained via general gradient descent optimization algorithms

= After training, encoder and decoder can be applied independently

= Applied to reasoning data, the autoencoder can be used to find
dense latent representations of data
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Conclusions

= Neural networks are capable of learning from reasoning data

» The autoencoder manages to substantially compress the data
(576 to0 42)

= The results suggest that behavioral data in its categorical form is
highly sparse

= By finding optimized representations, it might be possible to
Increase general model performance

= In prediction tasks, the autoencoder is able to recover 50%
missing data with a state-of-the-art precision of 48% (random
baseline of 11%)

» Individual patterns can be exploited (better performance than just
following the most frequent answer)

= Autoencoder can be used as baseline model for future
evaluations
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