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No scientists are gods

No scientists are immortals

What, if, anything, follows?
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Syllogistic Reasoning

• Quantified statements

(All, Some, Some ... not, No)

• Two premises consisting of three terms

(A, B, C)

• Premises are related via the middle

term B

• Eight possible conclusions relating end

terms A and C or “No Valid

Conclusion” (NVC)

• Total of 64 distinct syllogisms

All A are B

Some B are not C

What, if anything, follows?

2



111 years

Störring, 1908
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Theories of the Syllogism (Khemlani & Johnson-Laird, 2012)

Heuristics Formal Rules Diagrams, Sets & Models

Atmosphere PSYCOP Euler Circles

Matching Verbal Substitutions Venn Diagrams

Conversion Source-Founding Verbal Models

Probability Heuristics Monotonicity Mental Models
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Predictive Performance (Brand, Riesterer & Ragni, 2019)

Matching PHM Atmosphere MMT PSYCOP Conversion VerbalModels
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Observation: Predictive Performance

• Models predictions are suboptimal

• Theories well-founded in statistical and psychological phenomena

• Focus on investigating isolated effects

• Models created to be compatible

• Often use logics as guiding principle

• However, current models make unsuitable predictions

• Do not leverage predictive power of the effects

• Lacking focus on predictive properties of the domain

• Example: handling of invalid syllogisms
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No Valid Conclusion

Proportions of responses to syllogistic problems.

Aac Aca Iac Ica Eac Eca Oac Oca NVC

Ragni20161 3% 2% 13% 11% 9% 8% 13% 13% 28%

Khemlani20122 4% 1% 13% 7% 13% 7% 12% 8% 30%

• Logically correct conclusion for the majority of tasks (37/64 ≈ 58%)

• Most-frequently selected response for a large part of the domain

(Ragni2016: 28/64 = 44%, Khemlani2012: 24/64 = 38%)

• Most-frequently selected response overall

• Ambiguous interpretation possible

1https://github.com/CognitiveComputationLab/ccobra
2Khemlani & Johnson-Laird, 2012 (additionally contains 6% “Misc” responses)
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Model Predictions
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Mental Models Theory: mReasoner (Khemlani & Johnson-Laird, 2013)

Problem Model CounterexampleHypothesis

search…

No B are A
No B are C
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Mental Models Theory: mReasoner (Khemlani & Johnson-Laird, 2013)

Problem Model CounterexampleHypothesis

search…

No A are CNo B are A
No B are C

B-A

A

-C

C

-B C

B -C

A

-A
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NVC Responses in Cognitive Models

• NVC is a major source of error for syllogistic models

• Suggests suboptimal approaches for handling NVC:

• Termination criterion for search exhaustion (e.g., mental models

theory)

• Completely ignored (most heuristics)

• Few heuristics to directly infer NVC exist
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NVC Heuristics



NVC Heuristics

Rule Description

Figural Syllogism of Figure 3 or 4

Negativity Both quantifiers in {Some...not,No}
Particularity Both quantifiers in {Some,Some...not}
PartNeg Both quantifiers in {Some, Some...not,No}
EmptyStart Transitive path starts with No

11



Figural Rule

• Figural Bias Effect3:

The order of terms influences solutions.

• NVC is preferred for

• AB-CB (Figure 3)

• BA-BC (Figure 4)

Figure

in
{3, 4}

NVC

Model
no

yes

3Johnson-Laird & Bara, 1984

12



Particularity, Negativity & PartNeg

• Informativeness4:

• All > Some > No ≈ Some...not

• Non-informative (negative)

quantifiers do not add information

(Negativity)

• Similar response insecurity possible for

particular quantifiers (Particularity)

• PartNeg combines both Negativity and

Particularity

Quantifier
1

Quantifier
2

in
{Some, Some … not, No}

?

in
{Some, Some … not, No}

?

NVC

Model

yes

yes

no

no

PartNeg rule.

4Probability Heuristics Model (Chater & Oaksford, 1999)
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Analysis



NVC Predictions
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NVC rule predictions for valid (top) and invalid (bottom) syllogisms. MFA

(bottom row) shows the syllogisms for which NVC is the most-frequent answer

by participants (Ragni2016 dataset).
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NVC Predictions - Results

• Rules cover different parts of the NVC prediction space

• Rule quality may differ on an individual level

• PartNeg is the best overall heuristic (matches MFA best)
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Augmented Models
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Augmented Models
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Results: Augmented Models

• NVC heuristics improve predictive performance

• PartNeg rule achieves overall best improvement (up to 40%)

• Misses are reduced (up to 28/64 syllogisms)

• Only few false alarms are introduced (up to 8/64 syllogisms)

• Main difference of predictive powers due to NVC

• Results highlight NVC as a major weakness of current models
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Conclusions

1. Invalid syllogisms are handled poorly by current models

• PartNeg attachment boosted predictive accuracy by up to 40%

• Future model iterations should integrate better NVC strategies

2. Isolation of details as an important strategy for model development

• Suggests potential for future improvement of cognitive models

• More properties to investigate (e.g., conclusion direction)

3. Model development must take predictions into consideration

• Reasoning models must be able to predict conclusions

• Models benefit from integrating inter-individual differences
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Thank You!
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