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Human Reasoning

• Reasoning is one of the core abilities of

humans

• Allows us to leverage available information to

decide on the best course of action

• Research shows that human reasoning differs

greatly from formal (first-order) logics
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Theories for Human Reasoning

• Traditional goals of modeling:

1. Satisfy psychological effects/phenomena

2. Probabilistically describe population data

• Problem:

Predictions derived from cognitive theories perform poorly in

prediction scenarios1

1Riesterer et al., 2018
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Predictive Performance for Syllogistic Models
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Research Question & Approach

Research Question

Is lacking performance due to noise in data or suboptimal theoretical

assumptions?

Data-driven methods (neural networks) to empirically investigate upper

bounds in predictive performance

• Automatically find and leverage structural patterns in the data

• Data which cannot be captured from the available features should

be regarded as noise

• Here, neural networks are not considered cognitive models but tools

for evaluation
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Syllogistic Reasoning

• Categorical quantified assertions

• Four quantifiers:

All, Some, Some ... not, No

• Two premises containing three terms

researchers, logicians, professors

• Responses relate end terms

(researchers, professors) via quantifier

or NVC

• Total of 64 distinct problems with 9

possible conclusions each

Some researchers are logicians

Some logicians are professors

What, if anything, follows?
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Research on Syllogistic Reasoning

• Rich history of modeling and analysis2

• Prediction lists available for seven theories

• Unclear which theory is to be preferred

• Recent evaluations have demonstrated shortcomings in predictive

performance3

→ Establish prediction-based evaluation (preferably on trial-level) as

core component of cognitive model evaluation

2Khemlani & Johnson-Laird, 2012
3Riesterer et al., 2018
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Prediction-Based Modeling Task

Goal of modeling:

Model should simulate the reasoning behavior of individuals.

• Predict specific conclusions instead of lists of possibilities

• Evaluation score based on proportion of correct predictions

• Verify models by performing crossvalidation
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The CCOBRA Framework

• Cognitive Computation for Behavioral

Reasoning Analysis (CCOBRA)

framework4

• Procedure:

1. Iterate over participants in the data

2. Iterate over individual problems

3. Query model for a specific prediction

4. Provide model with true conclusion

• Learning/Fitting Phases:

1. Pre-Training based on training data

2. Adaption based on true conclusions

CCOBRA

Task

ModelHuman

Prediction
True 

Response

adapt

collect collect

Evaluation

4https://github.com/CognitiveComputationLab/ccobra
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Evaluation Setting

• Models:

• Cognitive Models5

• Neural Networks

• Statistical Baseline Models

• Dataset: Ragni2016 from CCOBRA

• N = 139

• Each participant was presented with all 64 tasks

5Khemlani & Johnson-Laird, 2012
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Evaluation Models

Cognitive Models

- Atmosphere
- Conversion
- Matching
- Mental Models Theory (MMT)
- Probability Heuristics Model (PHM)
- PSYCOP
- Verbal Models

Neural Networks

- Multilayer Perceptron (MLP)
- Autoencoder
- Recurrent Neural Network (RNN)

Statistical Baselines

- Uniform guessing
- Most-Frequent Answer (MFA)
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Network Models

• Adaptive Multi-Layer Perceptron (MLP):

• Problem-response mapping

• Adapts by continuing training

…

• Denoising Autoencoder:

• Treats conclusions as reasoner profile

• Imputes missing input information

• Adapts by filling up reasoner profile

• Recurrent Neural Network (RNN):

• Trained on experimental task sequence

• Leverages sequential effects

• Not adapted to the individual
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Predictive Accuracy
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Predictive Accuracy
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Network Training Performance
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Conclusions

• Cognitive models perform poorly on the accuracy-based prediction

task

• Value of explanations rests on predictive accuracy

• Shows limited applicability of the current theories

• Lacking performance of the models not entirely due to noise:

• Neural networks able to better use structure in the data

• Syllogistic domains still offers potential for future improvement

• Individual differences exists and can be leveraged (adaptive networks)
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Thank You!
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Code on GitHub:

https://github.com/nriesterer/iccm-neural-bound
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