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Human Reasoning

e Reasoning is one of the core abilities of
humans
e Allows us to leverage available information to
decide on the best course of action /

e Research shows that human reasoning differs
greatly from formal (first-order) logics



Theories for Human Reasoning

e Traditional goals of modeling:
1. Satisfy psychological effects/phenomena
2. Probabilistically describe population data
e Problem:

Predictions derived from cognitive theories perform poorly in

prediction scenarios?

1Riesterer et al., 2018



Predictive Performance for Syllogistic Models
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Prediction data taken from Khemlani & Johnson-Laird (2012)



Research Question & Approach

Research Question

Is lacking performance due to noise in data or suboptimal theoretical
assumptions?

Data-driven methods (neural networks) to empirically investigate upper
bounds in predictive performance

e Automatically find and leverage structural patterns in the data

e Data which cannot be captured from the available features should
be regarded as noise

e Here, neural networks are not considered cognitive models but tools
for evaluation



Syllo c Reasonin

e Categorical quantified assertions

e Four quantifiers:
All, Some, Some ... not, No

e Two premises containing three terms Some researchers are logicians
researchers, logicians, professors Some logicians are professors
e Responses relate end terms What, if anything, follows?

(researchers, professors) via quantifier
or NVC

e Total of 64 distinct problems with 9
possible conclusions each



Research on Syllogistic Reasoning

e Rich history of modeling and analysis?
e Prediction lists available for seven theories

e Unclear which theory is to be preferred

e Recent evaluations have demonstrated shortcomings in predictive

performance?

— Establish prediction-based evaluation (preferably on trial-level) as
core component of cognitive model evaluation

2Khemlani & Johnson-Laird, 2012
3Riesterer et al., 2018



Prediction-Based Modeling Task

Goal of modeling:

Model should simulate the reasoning behavior of individuals.
e Predict specific conclusions instead of lists of possibilities
e Evaluation score based on proportion of correct predictions

e Verify models by performing crossvalidation



The CCOBRA Framework

e Cognitive Computation for Behavioral
Reasoning Analysis (CCOBRA)
framework*

e Procedure:

1. lterate over participants in the data

L Task
2. lterate over individual problems as

3. Query model for a specific prediction / \
Q q 5 Human Model
4. Provide model with true conclusion l yd\v
k)
e Learning/Fitting Phases: e l
Response Prediction

1. Pre-Training based on training data
2. Adaption based on true conclusions

“https://github.com/CognitiveComputationLab/ccobra


https://github.com/CognitiveComputationLab/ccobra

Evaluation Setting

e Models:
o Cognitive Models®
e Neural Networks
e Statistical Baseline Models
e Dataset: Ragni2016 from CCOBRA
e N =139
e Each participant was presented with all 64 tasks

5Khemlani & Johnson-Laird, 2012



Evaluation Models

Neural Networks

Cognitive Models

- Multilayer Perceptron (MLP)
- Autoencoder

- Atmosphere
- Recurrent Neural Network (RNN)

- Conversion

- Matching

- Mental Models Theory (MMT)

- Probability Heuristics Model (PHM)
- PSYCOP

- Verbal Models

Statistical Baselines

- Uniform guessing
- Most-Frequent Answer (MFA)
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Network Models

e Adaptive Multi-Layer Perceptron (MLP):

e Problem-response mapping
e Adapts by continuing training

e Denoising Autoencoder:

e Treats conclusions as reasoner profile
e Imputes missing input information

e Adapts by filling up reasoner profile

e Recurrent Neural Network (RNN):
e Trained on experimental task sequence
e Leverages sequential effects
e Not adapted to the individual

11



Predictive Accuracy

Proportion of Correct Predictions
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Predictive Accuracy
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Network Training Performance

MLP Autoencoder
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Conclusions

e Cognitive models perform poorly on the accuracy-based prediction
task

e Value of explanations rests on predictive accuracy
e Shows limited applicability of the current theories
e Lacking performance of the models not entirely due to noise:

e Neural networks able to better use structure in the data
e Syllogistic domains still offers potential for future improvement
e Individual differences exists and can be leveraged (adaptive networks)
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Code on GitHub:

https://github.com/nriesterer/iccm—neural-bound
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