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Abstract

Recent work in modeling human syllogistic reasoning claimed
that heuristic approaches perform worse in accounting for ex-
perimental data than more comprehensive representations of
cognition. We show that this observation might have been due
to a misconception of the goals heuristics are often developed
for: representing a specific psychological phenomenon or re-
flecting individual inference strategies. To demonstrate the
performance of heuristic models, we introduce a novel model
for syllogistic reasoning fundamentally based on transitivity.
By evaluating it based on predicting the most frequent answer,
i.e., the response most often selected by participants, we show
that this model is able to outperform the current state of the
art, demonstrate the promising role of transitive inferences in
syllogistic reasoning, and discuss its implications for modeling
individual reasoners instead of populations.
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Introduction
Syllogistic reasoning is, next to conditional and relation rea-
soning, one of the core domains of human reasoning research
(Evans, 2002). Syllogisms are quantified statements of the
form “All pilots are painters, Some painters are divers” con-
sisting of two premises which are constructed by relating
two terms A-B (i.e., pilots-painters), and B-C (i.e., painters-
divers) via one quantifier out of “All, Some, No, Some ...
not” (for additional background information see Khemlani &
Johnson-Laird, 2012). Depending on the order of terms in the
premises, syllogisms can be classified into four figures:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

The goal of syllogistic reasoning tasks is to use the infor-
mation of the premises which are related to each other via
the middle term B in order to draw a conclusion about the
end terms A, C by using one of the quantifiers mentioned
above or infer “No Valid Conclusion” (NVC) if there is none.
In total, by considering all combinations of quantifiers and
figures, there are 64 distinct syllogistic problems with nine
possible conclusions causing the domain to be well-defined
and accessible for cognitive modeling endeavors. To increase

*Both authors contributed equally to this manuscript.

readability of the syllogistic problems, quantifiers will be rep-
resented in accordance to their traditional latin abbreviations
(originating from “affirmo” and “nego”) by an uppercase let-
ter for the remainder of the article:

All Some No Some ... not

A I E O

Syllogistic problems are encoded by specifying these quan-
tifier encodings as well as the figural identifier (e.g., AI1 for
“All A are B; Some B are C”).

Research shows that human syllogistic inferences differ
substantially from classical logics (Wetherick & Gilhooly,
1995). Over the course of the last decades, multiple sta-
tistical effects and psychological phenomena were identified
and used to formulate hypotheses and theories about mental
representations and inferential mechanisms used when rea-
soning over syllogisms. Traditionally, analyses of syllogistic
models are based on aggregated data resulting in models be-
ing evaluated in terms of their capability to capture an “aver-
age” reasoner. As an example, the authors of a meta-analysis
(Khemlani & Johnson-Laird, 2012) relied on hits, correct re-
jections, and correct predictions to quantify the match be-
tween model predictions and experimental data. Their results
showed that no satisfactory ordering of model performances
could be identified as all theories exhibited distinct strengths
and weaknesses with respect to the evaluation metrics.

In this paper, we introduce a novel model for syllogistic
reasoning — TransSet — which is based on a heuristic use
of transitive inferences. We evaluate the model by focus-
ing on the ability to predict the most frequently given answer
(MFA) to a syllogism. This reflects the response given by the
“average” reasoner, which lies at the center of population-
based analyses. The model’s performance is discussed and
compared to the state of the art models in cognitive model-
ing of syllogistic reasoning. Additionally, since group-level
results do not necessarily generalize to the individual level
(Molenaar, 2004; Fisher, Medaglia, & Jeronimus, 2018), we
investigate the transferability of the results to the level of in-
dividuals.

The structure of the remainder of the article is as follows.
First, we introduce related literature on cognitive modeling
in the field of syllogistic reasoning as well as on statisti-
cal effects and psychological phenomena we base our model



on. Second, we give details about the model’s computational
principles along with an overview of the responses it is able to
predict. Third, we perform the predictive analysis of the state
of the art and our newly proposed model. Finally, the impli-
cations of the results are discussed and directions for future
work are suggested.

Related Work
Developing accurate models to explain and predict human re-
sponses which differ greatly from classical logics (Wetherick
& Gilhooly, 1995) has been a core focus of syllogistic rea-
soning research in the past decades. Currently, there exist
at least twelve cognitive theories attempting to give expla-
nations about the inferential mechanisms inherent to human
cognition by relying on a multitude of different methodolog-
ical foundations (Khemlani & Johnson-Laird, 2012). The au-
thors of a recent meta-analysis (Khemlani & Johnson-Laird,
2012) proposed a classification of the existing theories into
heuristic theories largely based on simple explanations for
differences from classical logics, formal rule theories mainly
proposing logic-based inference mechanisms, and theories
based on diagrams, sets, or models which focus on mental
representation of information and corresponding inferential
operations.

Recently, an increasing effort has been made to turn ab-
stract and often underspecified cognitive theories of syllogis-
tic reasoning into computational models allowing for an as-
sessment of predictions. In their meta-analysis, Khemlani and
Johnson-Laird (2012) compiled prediction tables for most of
the cognitive theories resulting in an analysis showing that
the existing theories feature distinct predictive properties with
respect to hits, correct rejections, and correct predictions. In
consequence, no clear ranking of the models’ predictive qual-
ities could be determined.

One minor result of the meta-analysis was that heuristic
models generally perform worse than more elaborate com-
prehensive accounts which try to give more detailed expla-
nations about cognition by tying into mental representation,
memory, or other components of the human mind (for an ex-
ample, see the mental models theory, MMT, Johnson-Laird,
1983). However, as recent work shifting the focus of analy-
sis to predicting responses could show, the poor performance
of heuristics might have been due to a mismatch of model-
ing purpose and intent. Since heuristics do not aim at ex-
plaining the general population but attempt to formalize spe-
cific strategies which may be applied by certain individu-
als, caution needs to be exercised when analyzing compara-
tive performance evaluations. Indeed, recent work combining
heuristics to form a composite portfolio model demonstrated
a substantial improvement in performance when leveraging
strengths while avoiding weaknesses of specific heuristic ac-
counts (Riesterer, Brand, & Ragni, 2018). A conclusion of
this work is that heuristic models should not be underrated
in general cognitive modeling. While potentially unsuitable
as comprehensive accounts of human cognition, they might

be able to reflect strategies and mechanisms employed by in-
dividuals. Because of this they can serve as promising test
benches to investigate the role of the numerous statistical ef-
fects and psychological phenomena uncovered.

A fundamental concept of human reasoning that has been
extensively investigated is transitivity. In the domain of rea-
soning in particular, the term pseudo-transitive fallacy was
introduced to describe the phenomenon that human reasoners
are prone to drawing transitive inferences even if logically un-
warranted (Goodwin & Johnson-Laird, 2008). Some reason-
ers also assumed transitivity and symmetry when presented
with a completely unknown relation (Tsal, 1977).

In the following, we rely on transitivity to develop a
novel heuristic model of human syllogistic reasoning which
is based on transitive chains of information. The idea to ex-
plain syllogistic reasoning based on transitive effects is not
new. Guyote and Sternberg (1981) introduced a model which
represents information as pairs and integrates set relations via
rules applied to transitive chains of information. The differ-
ence to what we propose is that transitivity is used as the driv-
ing factor for reasoning. Our model assumes transitivity to
serve a heuristic purpose allowing humans to avoid relying
on higher-level reasoning processes.

A Transitive Model
A major part of the inferences that are drawn on a regular
basis in daily life are transitive (e.g., A is bigger than B, B is
bigger than C, therefore A is bigger than C). Usually, these
kinds of inferences are easy for human reasoners to draw. On
the other hand, tasks that look like transitive inference tasks
at first glance, when in reality they are not, are prone to errors
originating from an unwarranted use of transitivity. It can be
assumed that the simplicity and familiarity of transitive tasks
plays a major role for this kind of fallacy.

In the following we propose a heuristic model for syllogis-
tic reasoning based on the principle of transitivity. The main
assumption of the heuristic model is that some human rea-
soners try to circumvent a fully fleshed-out inference process
by trying to apply simple rules for patterns they are famil-
iar with from transitive inferences. Here lies the major dif-
ference to the transitive-chain theory (Guyote & Sternberg,
1981), which is a theory of the human reasoning process in-
stead of a heuristic which might be used by some reasoners to
avoid in-depth inference processes by applying shallow trans-
formations to obtain familiar patterns.

The general process of TransSet is sketched in Figure 1.
Its first step focuses on determining the direction of the syl-
logism by looking for a transitive pattern A-B-C or C-B-A.
Such patterns can be found directly for syllogisms with fig-
ure 1 and 2, corresponding to a path from A to C and from C
to A, respectively.

For Figure 3 and 4 this process fails, which leads to an
NVC response in most cases. In some cases, however, a path
can be constructed by changing the direction of one of the
premises: Figure 3 syllogisms consist of two premises featur-
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In analogy to
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Figure 1: Flow of the TransSet model. First, the direction is
determined by extracting a transitive path from the premise
information. Second, the quantifier is determined by merg-
ing quantifiers. In case of failures resulting from insufficient
information or disconnected premises, NVC is generated.

ing paths to B, while Figure 4 syllogisms yield paths starting
from B. In both cases it has to be decided which categorical
set (A or C) should be put in the place of B. At first glance, it
might seem reasonable to choose the set of elements that has
the most informative quantifier as it is able to “compensate”
for the uncertainty introduced by changing the premise direc-
tion. We consider the universal quantifiers A and E as “in-
formative”, since they make statements about all elements in
a set. The TransSet model therefore changes the direction of
the premise with the most informative universal quantifier, if
there is a single “most informative” universal quantifier (with
an ordering of A > E). In case of ties or a lack of informa-
tive quantifiers, the process fails and returns NVC. Note, that
the change of direction requires the assumption of symmetry,
which is logically invalid for the quantifier A. The occurrence
of this deviation from classical logic in human reasoning be-
havior is also a core concept of the conversion theory (Revlis,
1975).

As soon as a path is obtained, the task can be solved by
propagating the starting set of elements along the path (while
applying the quantifiers). For example, considering syllogism
AI1 (All A are B, Some B are C), a set consisting of all A is
propagated to B, where it is filtered by the second quanti-
fier on its path from B to C, reducing the set to “Some A”.
Therefore, the conclusion would be “Some A are C”, which
is logically invalid. It is important to note that the process of

set propagation yields the same conclusion quantifiers as the
atmosphere theory (Wetherick & Gilhooly, 1995), but also
predicts the direction of the answer: a path from A to C nat-
urally corresponds to an answer with the direction A → C.
The resulting predictions are in line with the figural effect
(Johnson-Laird, 1983).

The propagation, however, does not succeed in all cases.
When the set obtained after filtering by the first quantifier is
empty, traversing the transitive path is no longer possible. For
example, when considering syllogism EI1, the set after the
path A → B would be empty, as there are no elements from A
that are also B. It is therefore not possible to integrate the sec-
ond quantifier, as the set cannot be reduced any further. This
leads to the NVC response, since the endpoint of the path can-
not be reached. An exception to this can occur if the second
quantifier is A: because A does not require any filtering, it
corresponds to simply passing the set ahead, which prevents
the path from breaking. Note, that this failure of the propaga-
tion induces an asymmetry regarding the quantifier which is
not generally assumed in heuristic models: since it can only
happen if the first processed quantifier leads to an empty set,
syllogism EI1 and IE2 are affected but IE1 and EI2 are not.

The TransSet model is a heuristic model. As such, it only
describes a single heuristic strategy assumed to be used by
some human reasoners for syllogistic reasoning. Therefore,
we used the heuristic in a strictly deterministic setup, where a
single prediction for each syllogism was generated according
to the procedure described above. The resulting predictions
are shown in Table 1.

Analysis
The following analysis is based on the dataset and models re-
ported by Khemlani and Johnson-Laird (2012). Additionally,
we included a separate analysis on a dataset of 139 reason-
ers obtained from a web experiment conducted on Amazon
Mechanical Turk which was published as part of the bench-
marking framework CCOBRA1. This second dataset is not
only included to extend the size of the evaluation dataset, but
also because it contains unaggregated responses to syllogis-
tic problems which can be used to assess a model’s capability
to account for individual reasoners. All files related to the
following analyses are available on GitHub2.

MFA Assessment
First, we investigate how accurately models are able to predict
the MFA by comparing the set of possible predictions for a
given syllogism with the most frequently selected response in
the data.

Figure 2 depicts the results of this evaluation based on
two different metrics. The left plot presents the propor-
tion of syllogistic problems which feature an MFA response
that is contained in the set of possible predictions by the re-
spective model. The obtained values differ substantially be-

1https://github.com/CognitiveComputationLab/ccobra
2https://github.com/Shadownox/iccm-transset
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Figure 2: Analysis of predictive performances based on MFA comparison. Left plot depicts proportion of syllogistic prob-
lems where at least one of the possible model predictions matches the MFA. Right plot depicts accuracy of predicting MFA
(discounted for multiple possible conclusions).

Table 1: Predictions of the TransSet model.

Syllogism Prediction Syllogism Prediction

AA1 Aac EA1 Eac
AA2 Aca EA2 Eca
AA3 NVC EA3 Eac
AA4 NVC EA4 Eca
AI1 Iac EI1 NVC
AI2 Ica EI2 Oca
AI3 Ica EI3 Oca
AI4 Iac EI4 NVC
AE1 Eac EE1 NVC
AE2 Eca EE2 NVC
AE3 Eca EE3 NVC
AE4 Eac EE4 NVC
AO1 Oac EO1 NVC
AO2 Oca EO2 NVC
AO3 Oca EO3 NVC
AO4 Oac EO4 NVC
IA1 Iac OA1 Oac
IA2 Ica OA2 Oca
IA3 Iac OA3 Oac
IA4 Ica OA4 Oca
II1 Iac OI1 NVC
II2 Ica OI2 Oca
II3 NVC OI3 NVC
II4 NVC OI4 NVC
IE1 Oac OE1 NVC
IE2 NVC OE2 NVC
IE3 Oac OE3 NVC
IE4 NVC OE4 NVC
IO1 Oac OO1 NVC
IO2 NVC OO2 NVC
IO3 NVC OO3 NVC
IO4 NVC OO4 NVC

tween models. While heuristics such as Matching, the Prob-
abilistic Heuristic Model (PHM), or Atmosphere only con-
tain the MFA response in less than 60% of syllogistic prob-
lems, model-based approaches such as the Mental Models
Theory (MMT) or Verbal Models are able to achieve above
80%. These observations are in line with the results obtained
by Khemlani and Johnson-Laird (2012). However, despite
its fundamentally heuristic principles, TransSet is capable to
compete with the most performant state of the art models ar-
riving at MFA coverage proportions of above 80% demon-
strating that heuristic principles are not generally inferior to
more comprehensive models.

A shortcoming of this type of coverage-based analysis is
that it ignores the size of the sets of possible model predic-
tions. However, since the more responses a model is allowed
to include the higher the possibility is to cover the MFA, mod-
els need to be penalized for unnecessary predictions. This is
presented in the right plot of Figure 2 which assigns a score of
1/|Ps| if the MFA is contained in the prediction set Ps thereby
introducing a penalty factor linear in the number of possi-
ble predictions. As a result, a model is given a score of 1 if
it does not include other responses apart from the MFA for
all syllogisms and lower scores if unnecessary conclusions
are predicted. For example, the mental models theory cap-
tures the MFA “Aac” for syllogism “AA1” in its prediction
set {Aac,Aca, Ica}. As a result it is assigned a score of 1/3.

This plot draws a different picture of model performances.
It shows that when discounting scores based on the number
of predictions, performances drop considerably. MMT and
Verbal Models which dominated the coverage analysis (left
plot) drop substantially due to the fact that they include up to
five of the nine possible conclusions in their prediction sets.
TransSet on the other hand remains unchanged since it only
allows a single prediction to each syllogistic problem.

Put together, both plots demonstrate that the high levels of
accuracy achieved by some models (Mental Models, Verbal
Models) are mainly due to their large numbers of predicted
responses. When compared to TransSet, however, it becomes
apparent that complex and potentially parameterized mod-
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Figure 3: Evaluation of the predictive accuracies of syllogistic models. Boxplots denote medians, inter-quartile range (IQR)
as well as whiskers extending to the last data point within a distance of 1.5 times the IQR from the edge of the boxes. Points
indicate the accuracy for a specific individual reasoner. Accuracies on the CCOBRA 139 participant dataset of the state-of-the-
art models computed from the predictions as reported by Khemlani and Johnson-Laird (2012) are depicted alongside TransSet
and two baseline models: “Uniform” corresponds to using a uniform distribution to randomly select an answer and “MFA”
reflects the most-frequent answer strategy.

els are unnecessary for predicting aggregated responses. The
heuristic principles based on notions of transitivity resulting
in a single response suffice to achieve state-of-the-art perfor-
mance. Note that this analysis focusses on the ability of pre-
dicting responses, whereas some models might also be able
to provide additional estimates (e.g., reaction times), which
are out of scope for the present article.

Individual Match
The results show that TransSet is able to cover a majority
of the most frequently given answers and is able to account
for populations of reasoners. The pressing question is how
relevant MFA is for capturing the variety of strategies that are
employed by human reasoners. Put differently, it would be
insightful to see whether reasoners differ with respect to their
strategies and whether MFA, and accordingly TransSet as its
approximation, is a suitable representation for the majority of
reasoners.

The second analysis reported in the following therefore
shifts the focus towards an assessment of the capability of
models to account for the strategies employed by individual
human reasoners. In particular, we investigate the match be-
tween model predictions and individual responses of the 139
participants contained in the CCOBRA dataset.

Figure 3 depicts the evaluation output obtained from the
benchmarking framework CCOBRA. The image depicts the
accuracy of individual models when predicting responses for
individual reasoners (dot swarm). The box plots present an
aggregated representation of these exact results. The image
shows that models achieve low predictive accuracies across
the board with TransSet surpassing the current state of the
art. The swarm plots show that variances of accuracies dif-
fer greatly between models. While models on the lower end

of the spectrum produce accuracies between 0% and 40%,
TransSet is able to predict up to 80% of an individual’s re-
sponses correctly.

There are two sides to the results depicted here. On the
one hand, it is interesting to see that some of the models are
able to successfully predict most of the responses for at least
a small part of the population. On the other hand, it shows
that not even MFA is able to adequately cover the majority of
people. This demonstrates that syllogistic model evaluation
solely on aggregated data is severely limited and not neces-
sarily generalizable to individuals. This puts the general goals
of cognitive modeling into perspective. A model that claims
to reflect cognitive processes or general phenomena of nature
in a suitable manner should always be able to achieve high
levels of predictive accuracy. If we assume reasoners to rely
on a large number of independent strategies this would corre-
spond to models being able to match certain individuals well
while completely failing to capture others. This is often the
case for heuristics, since the phenomena or cognitive falla-
cies they are constructed on are only applicable to a subset of
individuals in the population. Models accounting for general
principles, on the other hand, should generally show a smaller
variance in coverage of individuals since the principles should
be prevalent in all responses to some degree.

Discussion
In this article we introduced TransSet, a novel model for pre-
dicting human syllogistic reasoning. Drawing from the statis-
tical effects and psychological phenomena of the recent liter-
ature, TransSet is capable of competing with state-of-the-art
models by relying on deterministic and heuristic principles
only. When discounted for the number of possible predic-
tions a model generates for a syllogism, TransSet is able to



achieve a coverage of MFA of above 80% resulting in an im-
provement of about 20% over the state of the art as reported
by Khemlani and Johnson-Laird (2012).

The main conclusions of this article are twofold. First,
we demonstrate that complex parameterized models are not
required when aiming for predicting an “average” reasoner,
i.e., aggregated data. TransSet, which generates a single de-
terministic response to each syllogism is not only competing
with but outperforms the state of the art when discounting for
the number of possible responses. Second, the evaluation of
predictive accuracy on individuals highlights that no existing
model is able to adequately reflect the reasoning strategy em-
ployed by the majority of participants. In order to not only
account for a select few reasoners but for a wide variety of
individuals, adaptive models tuned to the inferential mecha-
nisms of specific reasoners are required. This, however, re-
mains an open challenge for future work.

TransSet’s performance is made possible because it incor-
porates effects and phenomena uncovered in empirical re-
search. As such it is comprised of ideas found in other mod-
els (e.g., transitivity and illicit conversion) and as such can
be understood as a superset of models. The fact that a sim-
ple model based on heuristic principles is able to outperform
the state of the art illustrates the potential that remains in the
field. Especially when moving beyond models for aggregated
data, the adaptability of parameterized models to individual
inferential mechanisms will allow for an even better under-
standing of cognition and consequently for the development
of more accurate models.

Human syllogistic reasoning is far from being solved. In
addition to outperforming the state of the art in the aggregate
case, TransSet demonstrates a performance that suggests that
its underlying concepts form a plausible reasoning strategy
for at least some individuals. The heuristic use of transitiv-
ity has therefore proven to be a powerful mechanism for ex-
plaining human syllogistic reasoning performance and might
suggest connections to related results from cognitive science
indicating that humans are generally likely to draw transi-
tive conclusions even when they are unjustified (Goodwin &
Johnson-Laird, 2008). It remains to be seen if the model can
be transferred to other domains featuring transitive properties
successfully (e.g., spatial-relation or conditional reasoning).
Currently, we only focus on a direct extraction of general
output predictions from the model. Future work will focus
on two directions: First, we will investigate possible parame-
terizations allowing the model to fine-tune itself to individual
human reasoners. Second, we will investigate further prop-
erties of the reasoning process such as reaction times or its
connection to the psychological phenomena of syllogistic rea-
soning.
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