On the Matter of Aggregate Models for Syllogistic Reasoning: A Transitive Set-Based Account for Predicting the Population

Daniel Brand, Nicolas Riesterer & Marco Ragni July 22nd, 2019

Cognitive Computation Lab Department of Computer Science University of Freiburg

Syllogistic Reasoning

All scientists are gods Some gods are immortal

What, if anything, follows?

- Reasoning is a core skill of human cognition
- Core domain: syllogisms, i.e., categorical quantified assertions

All scientists are gods Some gods are immortal

Logic: No Valid Conclusion

¹Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal syllogistic reasoning. *Journal of Experimental Psychology, 18*(4), 451

All scientists are gods Some gods are immortal

Logic: No Valid Conclusion

Data: Some scientists are immortal (70%)

¹Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal syllogistic reasoning. *Journal of Experimental Psychology*, *18*(4), 451

All scientists are gods Some gods are immortal

Logic: No Valid Conclusion

Data: Some scientists are immortal (70%)

Theories try to capture the deviations from logic

¹Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal syllogistic reasoning. *Journal of Experimental Psychology, 18*(4), 451

All scientists are gods Some gods are immortal

Logic: No Valid Conclusion

Data: Some scientists are immortal (70%)

- Theories try to capture the deviations from logic
- Example: Atmosphere heuristic¹ predicts quantifier
 - by merging quantity and polarity
 - ... but no statement about the direction

 $^{^1}$ Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal syllogistic reasoning. *Journal of Experimental Psychology*, 18(4), 451

Theories of Syllogistic Reasoning (Khemlani & Johnson-Laird, 2012)

Heuristics	Formal Rules	Diagrams, Sets & Models	
Atmosphere	PSYCOP	Euler Circles	
Matching	Verbal Substitutions	Venn Diagrams	
Illicit Conversion	Source-Founding	Verbal Models	
Probability Heuristics	Monotonicity	Mental Models	

- Meta-analysis demonstrates: no single best performing theory
- Heuristic approaches perform worse than model-based approaches

Covering the Most Frequently Given Answer

Research Question

Are simple heuristic strategies simply *insufficient* for predicting human syllogistic reasoning?

Research Question

Are simple heuristic strategies simply *insufficient* for predicting human syllogistic reasoning?

Can we identify *simple mechanisms* that explain inferences?

Heuristic Principles

- We need to identify fundamental principles of heuristics
- Requirements for good heuristics, they
 - Should work in many practical situations (logically valid when applied correctly)
 - Should not require deep reasoning process (akin to pattern matching)
 - Should leave room for illogical inferences (application in unwarranted cases)

Transitivity

Transitivity is a core principle and good heuristic:

- 1. Works in practice:
 - Basic principle for making inferences

²Goodwin, G. P., & Johnson-Laird, P. N. (2008). Transitive and pseudo-transitive inferences. *Cognition*, *108*(2), 320-352

Transitivity

Transitivity is a core principle and good heuristic:

- 1. Works in practice:
 - Basic principle for making inferences
- 2. Pattern matching:
 - Attempts to find simple paths of information flow (A-B-C)
 - · Conclusion is intuitive

 $^{^2}$ Goodwin, G. P., & Johnson-Laird, P. N. (2008). Transitive and pseudo-transitive inferences. *Cognition*, 108(2), 320-352

Transitivity

Transitivity is a core principle and good heuristic:

- 1. Works in practice:
 - Basic principle for making inferences
- 2. Pattern matching:
 - Attempts to find simple paths of information flow (A-B-C)
 - Conclusion is intuitive
- 3. Room for illogical inferences:
 - Transitivity is often applied in unjustified cases (pseudo-transitivity)²
 - Participants might force a task into a transitive shape

 $^{^2}$ Goodwin, G. P., & Johnson-Laird, P. N. (2008). Transitive and pseudo-transitive inferences. *Cognition*, 108(2), 320-352

Syllogistic Domain

- Total of 64 problems consisting of
 - 4 quantifiers (All, Some, Some ... not, None)
 - 4 figures depending on arrangement of terms (A, B, C)

Figure 1	Figure 2	Figure 3	Figure 4
A-B	B-A	A-B	В-А
B-C	C-B	C-B	B-C

• Nine possible conclusions:

Eight conclusions relating end terms (A, C) and "No Valid Conclusion" (NVC)

The TransSet Model

1. Determine direction

Search for a transitive path and determine the direction of the conclusion

Determine quantifierPropagate a set along the path

Determine Direction: Finding a Transitive Path

Figure 1:

All A are B, Some B are C
$$A \longrightarrow B \longrightarrow C$$

- Transitive path directly available (A-B-C)
- Analogously possible for Figure 2 (C-B-A)
- Directly yields A-C (Figure 1) and C-A direction (Figure 2)

Determine Direction: Finding a Transitive Path

Figure 3:

All A are B, Some C are B
$$A \longrightarrow B \longleftarrow C$$

- No direct path available
- Assumption: Reasoners change task structure to enforce a path
- NVC if path cannot be found

Determine Direction: Finding a Transitive Path

Figure 3:

- Premises with universal quantifiers (All, No) treated bidirectionally
- Yields same path structures as for Figure 1 and Figure 2 syllogisms
- Same mechanism for Figure 4 syllogisms

Determine Quantifier: Set Propagation - Conflict

- Ambiguity of "No" as first quantifier: Empty set vs "All A are no B"
 - Empty set: No statement about elements of A
 - "No A are B" interpreted as "All A are no B"
- Set propagation fails

Determine Quantifier: Set Propagation - Conflict Resolution

- Start from the end of the path
- Bidirectional interpretation if second premise quantifier is "All"
- Simplifies ambiguity and leads directly to the conclusion

Analysis

Comparison of models with most-frequent answer (MFA)

- MFA is the optimal response strategy for aggregate prediction models
- Coverage: Check if MFA is in set of possible model predictions
- Accuracy: Discount coverage score based on number of possible predictions

• TransSet achieves peak performance

- TransSet achieves peak performance
- Cognitive models drop in performance when penalized for multiple responses
 - Highlights unspecificity of model predictions
 - Suggests severe shortcomings of the predictive forms of the models

Individualized Analysis

- Investigate how applicable reasoning strategies are to individual reasoners
- For individuals, evaluate the predictive accuracy on their responses (proportion of correct predictions)
- Heuristic models should be able to accurately predict a small number of participants and perform rather poorly on the rest

Individualized Analysis

Individualized Analysis

- Complex models are unsuitable, unless they can fine-tune predictions
- Large variance of MFA predictions
 - Highlights the limit of aggregation-based strategies
 - "Average reasoner" is an unsuitable representation for an individual

Conclusion

- TransSet is able to capture human reasoning data fairly well while adhering to known statistical effects and psychological phenomena:
 - Figural effect (Johnson-Laird, 1983)
 - Conversion (Chapman & Chapman, 1959)
 - Informativeness of quantifiers (Chater & Oaksford, 1999)
- Occam's Razor: questions worth of complex fit-based models
 - Unnecessary for modeling syllogistic reasoning unless able to be fine-tuned to individuals
 - TransSet as a simple heuristic suffices for population-based aggregate predictions

Thank You!

References

- Chapman, L. J., & Chapman, J. P. (1959). Atmosphere effect re-examined. journal of Experimental Psychology, 58(3), 220-226.
- Chater, N., & Oaksford, M. (1999). The probability heuristics model of syllogistic reasoning. Cognitive psychology, 38(2), 191-258.
- Goodwin, G. P., & Johnson-Laird, P. N. (2008). Transitive and pseudo-transitive inferences. *Cognition*, 108(2), 320-352.
- Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (No. 6). Harvard University Press.
- Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. *Psychological bulletin*, 138(3), 427-457.
- Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal syllogistic reasoning. Journal of experimental psychology, 18(4), 451-460.

Code on GitHub:

https://github.com/Shadownox/iccm-transset

Model Flow

